The role of Rho GTPase in cell stiffness and cisplatin resistance in ovarian cancer cells.
نویسندگان
چکیده
Changes in cell stiffness (Young's modulus, E), as measured via Atomic Force Microscopy (AFM), is a newly recognized characteristic of cancer cells and may play a role in platinum drug resistance of ovarian cancers. We previously showed that, compared to their syngeneic cisplatin-sensitive counterpart, cisplatin-resistant ovarian cancer cells are stiffer, and this cell stiffness was dependent on actin polymerization and presence of stress fibers. Here, we measured the correlation between Young's modulus (via AFM measurements on live, non-apoptotic cells in physiological buffer) and cisplatin-sensitivity (IC50 as determined via the XTT cell viability assay) in a panel of nine ovarian cancer cell lines representing a range of cisplatin sensitivities. We found that cisplatin-sensitive cells had a lower Young's modulus, compared to cisplatin-resistant cells and resistant cells had a cytoskeleton composed of long actin stress fibers. As Rho GTPase mediates stress fiber formation, we examined the role of Rho GTPase in cell stiffness and platinum resistance. Rho inhibition decreased cell stiffness in cisplatin-resistant CP70 cells and increased their cisplatin sensitivity while Rho activation increased cell stiffness in cisplatin-sensitive A2780 cells and decreased their cisplatin sensitivity. Based on changes in cell stiffness, IC50 and cellular actin stress fiber organization in CP70 and A2780 cells, our findings reveal a direct role of Rho mediated actin remodeling mechanism in cisplatin resistance of ovarian cancer cells. These findings suggest the potential applicability of cell mechanical phenotyping as a model for determining sensitivity of ovarian cancer cells that could have major implications in ovarian cancer diagnosis and personalized medicine.
منابع مشابه
Generation of Cisplatin-Resistant Ovarian Cancer Cell Lines
Ovarian cancer is the most lethal gynecological cancer in which cisplatin-based treatment plays fundamental role as the first line chemotherapy option. However, development of platinum-resistance is a critical and poorly understood problem in ovarian cancer treatment. Although in vitro generation of platinum-resistant ovarian cancer cell lines is a long established approach to uncover the molec...
متن کاملEGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells
Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherap...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کاملSensitization of Resistance Ovarian Cancer Cells to Cisplatin by Biogenic Synthesized Silver Nanoparticles through p53 Activation
Today, drug resistance is one of the major problems in fight against cancer. Therefore, combination of therapeutic strategies was raised to effectively improve disease prognosis. In this regard, silver nanoparticles (AgNPs) are considered significant due to their anticancer properties. This study aimed to return sensitivity to cisplatin to A2780 cisplatin-resistance cell lines in the presence o...
متن کاملSensitization of Resistance Ovarian Cancer Cells to Cisplatin by Biogenic Synthesized Silver Nanoparticles through p53 Activation
Today, drug resistance is one of the major problems in fight against cancer. Therefore, combination of therapeutic strategies was raised to effectively improve disease prognosis. In this regard, silver nanoparticles (AgNPs) are considered significant due to their anticancer properties. This study aimed to return sensitivity to cisplatin to A2780 cisplatin-resistance cell lines in the presence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Integrative biology : quantitative biosciences from nano to macro
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2014